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Abstract. When bonds are removed one by one and at random from a finite-size resistor 
network, the conductance (or resistance) does not change continuously, but rather a 
sequence of conductance (resistance) jumps of various sizes occurs. The larger jumps arise 
from those bonds which carry a relatively large current just before they are cut. We report 
on numerical simulations of these jumps for a random resistor network on the square 
lattice. We also give a scaling argument to account for this phenomenon, which yields the 
number of conductance jumps larger than AG scaling as (AG)-"j, with A, = du/(dv - t ) ,  
where t is the conductivity exponent and Y is the percolation correlation-length exponent. 
Equivalently, the number of resistance jumps greater than P R  scales as ( A R ) - * R ,  with 
A, = du/(dv+ I ) .  These predictions account for our  data on a qualitative level only, 
however, and we discuss some possible mechanisms for the quantitative discrepancies. 

In the study of random systems, one is generally interested in the behaviour of the 
thermodynamic limit, where physical observables are continuous functions of external 
parameters. For example, the conductance, G, of a random resistor network is a 
smooth function of the bond concentration p ,  and as p approaches the percolation 
threshold p c  from above, G vanishes as ( p  - pc) ' ,  where t is the conductivity exponent 
[ 11. However, in a finite-size realisation of the network, the behaviour is considerably 
different. The conductance is no longer a smooth function [2-51 because the removal 
of a single bond causes a finite change in the bond concentration. This effect becomes 
relatively more important near p c ,  as a bond may be singly connected [6] on a length 
scale comparable to the system size. Consequently, such a bond can carry a non-trivial 
fraction of the total current flowing through the network. The deletion of this type of 
bond can then lead to a macroscopic change in the distribution of currents in the 
network. Furthermore, the deletion of this bond can also lead to the fact that additional 
bonds are no longer part of the conducting backbone. These fluctuation effects are 
fundamental for an understanding of current flow in random media at the microscopic 
level. Our  goal, in this letter, is to understand these effects as embodied by the behaviour 
of conductance and  resistance jumps as a random resistor network is depleted at 
random. Very similar work on this issue has been carried out simultaneously and  
independently by Roux and  Wilkinson [7]. 

For the purposes of a qualitative understanding of the conductance jumps, consider 
first what happens when a single bond is removed from a d-dimensional lattice of 
linear size L, for the case where p is nearly equal to 1. In  this regime, effective medium 
theory [ l ]  offers an  excellent approximation for the behaviour of the conductance and  
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from this approach, it immediately follows that AG - Ap, where Ap - L-d. That is, 
the conductance jumps are well characterised, and  this is what is observed in numerical 
simulations and  experiments on random resistor networks [2-51. However, as p + p c ,  
the conductance jumps are no longer so predictable, as indicated in figure 1. Most of 
the time, the bond just removed was part of a finite cluster or a dangling end, which 
consequently leads to AG = 0. However, as discussed above, if the bond to be removed 
carries a substantial current, then its removal will lead to a relatively large jump in 
the conductance of the system. 

Although the presence of large conductance jumps would seem to obviate a 
conventional analysis for critical exponents, their existence can nevertheless be usefully 
exploited for estimating exponent values. For example, in an  experimental measure- 
ment of the concentration dependence of the conductance in a random resistor-diode 
network [ 5 ] ,  it was observed that the size of the conductance jumps was strongly 
correlated with corresponding jumps in the number of bonds contained in the conduct- 
ing backbone. Thus by studying the dependence of the conductance with respect to 
the backbone fraction, it is pmsible to obtain useful information about the conductivity 
exponent, even though the raw data is sufficiently ‘jumpy’ that it appears to preclude 
the possibility of estimating exponent values. Very recently, Thompson er a1 [8] have 
performed mercury injection experiments in porous media in order to probe this j ump  
phenomenon in a direct manner. Once the ‘breakthrough’ of mercury has occurred 
(so that the system is above the percolation threshold) then, as the pressure of the 
injected mercury is increased further, a sequence of resistance jumps which appear to 
have a power law distribution of sizes is observed. These jumps are postulated to 
originate from the formation of additional conducting paths of mercury as the pressure 
is increased. On the basis of these measurements, Thompson er al suggest that resistance 
jumps might help provide information about the structure of randomly porous media 
at the pore level. However, they also argue that resistance jumps imply that the injection 
process cannot be described in terms of a second-order phase transition. 

In  our work, the conductance and resistance jumps arise as a finite-size effect, 
which can then be naturally interpreted in terms of conventional scaling arguments. 
To support this point of view, we have performed numerical simulations of these jumps 
for random resistor networks on the square lattice, and  we have also constructed a 
simple-minded scaling argument for the jumps. Our scaling approach is based on the 
notion that the underlying source of the larger jumps is the breaking of singly connected 
bonds on various length scales. The predictions of this scaling argument are qualita- 
tively consistent with our numerical results, suggesting that the basic mechanism for 
the conductance jumps is captured by a scaling approach. However, there are quantita- 
tive discrepancies with numerical results, and we discuss several possible reasons for 
this in the conclusions. 

The simulations were performed on L x L square-lattice resistor networks, in which 
the opposite edges of the network were connected to bus bars, with one bus bar at 
potential V = 0 and the other at V = L. Periodic boundary conditions in the transverse 
direction are employed. The current flow problem was solved numerically by using 
the Fourier-accelerated conjugate gradient scheme, introduced by one of the authors 
[9]. We started with the completely occupied lattice, and bonds were removed, one 
by one, and  at  random. After each bond removal, the change in the conductance and 
resistance of the network was recorded, and  figure 1 gives the results obtained from 
a typical single realisation. We observe many relatively small conductance jumps, but 
with a few much larger jumps interspersed. If the bond that is removed is singly 
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Figure 1. ( a )  Plot of the conductance of a 16x 16 random resistor network as a function 
of the number of bonds removed from the system. This system has periodic boundary 
conditions in the transverse direction. We also show the configuration just before ( 6 )  and 
just after ( c )  the relatively large jump marked by the arrow in (a )  has occurred. 

connected on a relatively large scale, then there can also be a concomitant substantial 
change in the number of bonds in the backbone. This particular situation leads to a 
strong correlation between the large jumps in the conductance and relatively large 
changes in the structure of the conducting backbone, as illustrated in figure 1( b )  and ( c ) .  

Clearly, if we were to average over many configurations, the conductance would 
become a smooth function. However, consider the change in the conductance of a 
particular configuration when a single bond is removed. As discussed above, this 
quantity becomes less predictable as p - ) p c .  This behaviour is illustrated in figure 2, 
where we plot all the resistance jumps observed upon single bond removal, obtained 
from 12 configurations of a 32 x 32 network. Although the average size of the jumps 
is relatively small, the data also reveal that jumps on all scales exist, except when p 
is very nearly equal to 1 .  As in [8], we are then led to plot the number of conductance 
jumps larger than AG, N G ( A G )  (where we henceforth consider only the absolute value 
of the conductance difference), and the number of resistance jumps larger than AR, 
N R ( A R ) ,  as shown in figure 3. For these plots, we obtained data for lattices of linear 
dimension L = 4 (averaged over 8000 configurations), 8 (200 configurations), 16 (60 
configurations) and 32 (12 configurations). 
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Figure 2. A scatter plot showing all of the resistance jumps observed from 12 configurations 
of a 32 x 32 network, when p is decreased from unity to p c .  For p = 1, the resistance jumps 
are generally concentrated at one value, which corresponds to the behaviour expected from 
effective-medium theory. There also exist some very small jumps which correspond to 
deleting transverse bonds when p = 1 .  However, for p = p c ,  resistance jumps on all scales 
exist. Note that the apparent discreteness ofthe smallest size jumps is due to the discreteness 
in the binning of the data. 
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Both sets of data exhibit a rather well defined shoulder, below which the distribution 
of jump sizes is almost flat. The location of this shoulder corresponds closely to the 
value of the jump expected by removing a single vertical bond when p - 1 .  Beyond 
this shoulder, the distributions of jump sizes appear to have a power law form, which 
extends over a substantial range for the larger lattice sizes. We therefore define two 
new exponents AG and A R  by N,(AG) - ( A G ) p  and N R ( A R )  - ( A R ) - A ~ ,  respec- 
tively, to account for this power law behaviour. We estimated these exponents by 
performing linear least-squares fits to the data, when plotted on a double logarithmic 
scale, in which different portions of the data were removed in a systematic fashion. 
For L = 4  and 8, the fits were not very satisfactory owing to the relatively small range 
of apparent power law behaviour, but from the L = 16 and 32 data we estimate A G  = 1.25 
and A R  -0.83, with an uncertainty (statistical and systematic) of less than 10%. 

Now we present our scaling argument for the behaviour of the conductance and 
resistance jumps. The predictions we obtain are essentially the same as those given 
by Roux and Wilkinson [7], although the details of our respective arguments differ. 
Our approach is based on a number of assumptions which are in the spirit of a 
mean-field theory. First, we use the nodes and links model [lo] as our picture of a 
percolating system above the percolation threshold. We also assume that the conduc- 
tance jumps are monotonically ordered in increasing size as the bond concentration 
is decreased towards the percolation threshold. Finally, we assume that the primary 
source of the conductance jumps is the breaking of singly connected bonds within one 
macrolink of the nodes and links model. When such a bond is broken, we then imagine 
that the system evolves to a new homogenous nodes and links picture in which the 
correlation length has changed from [ to [+ dt ,  rather than becoming a slightly distorted 
nodes and links picture with one macrolink removed. 

More quantitatively, for a d-dimensional system of linear dimension L in which 
the correlation length is 5, the conductance is given by G - ( L/[)d-2[-S'", where 5 is 
the resistivity exponent. If a singly connected bond on length scale [ is removed, then 
one of the links breaks. For this slightly defective lattice, we can appeal to effective- 
medium theory [ l ] ,  from which it is immediate to show that the new value of the 
conductance, G', is related to G by G[l -([/L)d]. Therefore, the change in the 
conductance of the system is simply 

AG - (51  L)2 t - i '" .  ( 1 )  

Furthermore, the number of singly connected bonds on length scale [ in the system 
is given by (L/5)d[1'u [ 6 ] ,  so that to remove one singly connected bond on this scale 
requires a change in the absolute value of the bond concentration, Ap, proportional 
to (5 /L)d5- ' '" .  Then as p is decreased from p to a value near p c ,  the number of 
removals of singly connected bonds on length scale [ varies as 

In obtaining this last result, Ap was first rewritten as a function of ( p  - p J ,  and after 
the integral was performed, ( p  - p c )  was then eliminated to arrive at an expression 
that depends only on 5. Finally, by eliminating 5 between (1) and (2),  we obtain the 
number of conductance jumps larger than size AG 

(3)  N,(AG) - L-di/(2"-ilAG-d"/(2"-i) 
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Alternatively, we can use the exponent relation t = ( d  - 2 ) v +  t to rewrite the depen- 
dence of N , ( A G )  on AG as AG-Ac;, with 

d v  
h G = - .  

d v - t  (4) 

The same line of reasoning leading to ( 1 )  can be applied to the behaviour of the 
resistance change in the system when one macrolink is broken. By this approach, we 
find 

A R - ( ( / L ) 2 ‘ d - ’ ) @ ’ ” .  (1’ )  

Then by eliminating 6 in (1’) and (2) ,  we find the distribution of resistance jumps of 
size greater than or equal to AR given by 

(3’) N R ( A R ) -  L d i l [ r c d - l ) v + i l A R - d v / [ 2 ( d - l  ) v + < l  

As in (3) ,  we can rewrite the dependence of NR(AR)  on AR as A R - A ~ ,  with 

d v  
d v +  t ‘  

hR =- (4‘) 

Using the currently accepted values for the exponents t and v, in two dimensions, 
we obtain hG = 1.92 and h R  = 0.676. Furthermore, in two dimensions, the L dependence 
of the jump distribution is given by for the conductance and L+0.648 for the 
resistance, By comparing with the data of figure 3, we find qualitative but not 
quantitative agreement. Interestingly, the numerical results of Roux and Wilkinson 
[7] for the resistance jumps do agree extremely well with the prediction given in 
equation (4’). However, their data were based on a single realisation of a 203 network 
of the simple cubic lattice with both substitutional (percolation) disorder and disorder 
in the value of the bond conductances. Therefore, it is not clear to what degree (if 
any) the disorder in the bond conductances and the potential statistical errors affect 
quantitative results for the jump distribution. It would be interesting to test the scaling 
prediction more conclusively in three dimensions by considering the conductance 
jumps, and also by studying the dependence of the resistance and conductance distribu- 
tions on lattice size for purely percolation disorder. 

However, on general grounds, one may expect that a scaling argument based on 
the mean-field nodes and links picture will give more accurate results in three 
dimensions than in two. Within the framework of a nodes and links picture, it is to 
be expected that inhomogeneities in the properties of the macrolinks will be more 
pronounced in lower dimensions, and this is not accounted for in our scaling approach. 
Furthermore, by considering deterministic models of the percolating backbone, such 
as the ‘bubble’ model [ 113, we can gain additional insights about why scaling may not 
fully account for the distribution of conductance jumps. In the bubble model, the 
largest conductance jump is found to occur when a doubly connected bond pair 
becomes a singly connected bond. When a singly connected bond exists, the network 
conductance coincides with the voltage drop through the singly connected bond, and 
this latter quantity has been shown to grow logarithmically with the linear dimension 
of the system E l l - 1 3 1 .  As a result, the corresponding conductance jump should also 
reflect this logarithmic size dependence, and this may partially account for the dis- 
crepancies between our numerical results and the scaling predictions. 

In summary, we have studied the behaviour of the conductance and resistance 
jumps when bonds are removed, one by one and at random, from a resistor network. 
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These jumps are a manifestation of a finite-size effect in which the removal of a single 
bond is equivalent to a finite change in the bond concentration. The size distribution 
of conductance and resistance jumps appears to have a power law dependence on size, 
and a very approximate scaling theory for the exponents characterising these distribu- 
tions has been given. While we have focused only on the behaviour of the distribution 
of jump sizes, we believe that there are other useful applications for the conductance 
and resistance jumps. In particular, we believe that it may be possible to obtain 
accurate estimates for the conductivity exponent t from the concentration dependence 
of a single configuration of a random resistor network by exploiting information about 
the conductance jumps in an optimal way. Work along these lines is in progress. 

We wish to thank D Wilkinson for informing us of his parallel work on this problem, 
and for sending us a preprint of his work. The Center for Polymer Studies is supported 
in part by grants from the ARO, NSF and ONR. Work by GGB was supported in 
part by a grant from the DOE, grant no DE-AC02-86ER40284. This financial support 
is gratefully acknowledged. 
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